

qbsolv

A decomposing solver that finds a minimum value of a large quadratic unconstrained binary
optimization (QUBO) problem by splitting it into pieces. The pieces are solved using a
classical solver running the tabu algorithm. qbsolv also enables configuring a D-Wave
system as the solver.

Note

Access to a D-Wave system must be arranged separately.

Example

from dwave_qbsolv import QBSolv
Q = {(0, 0): 1, (1, 1): 1, (0, 1): 1}
response = QBSolv().sample_qubo(Q)
print("samples=" + str(list(response.samples())))
print("energies=" + str(list(response.data_vectors['energy'])))

Documentation

	Date

	Jun 03, 2019

	Introduction

	Reference Documentation

	Installation

	License

	Contributing to qbsolv

	Source [https://github.com/dwavesystems/qbsolv]

Ocean Software

	Ocean Home [https://ocean.dwavesys.com/]

	Ocean Documentation [https://docs.ocean.dwavesys.com]

	Ocean Glossary [https://docs.ocean.dwavesys.com/en/latest/glossary.html]

D-Wave

	D-Wave [https://www.dwavesys.com]

	Leap [https://cloud.dwavesys.com/leap/]

	D-Wave System Documentation [https://docs.dwavesys.com/docs/latest/index.html]

Indices and tables

	Index

	Module Index

	Search Page

	Glossary [https://docs.python.org/3/glossary.html#glossary]

Introduction

Divide-and-conquer and dynamic programming algorithms have a rich history in computer
science for problems with large numbers of variables. Many hard problems that can benefit
from quantum computers are to large to map directly to a QPU. To solve a problem with
more variables than the available number of qubits, we break the problem into subproblems, solve the
subproblems, and then reconstruct an answer to the original problem from the subproblem
solutions.

qbsolv is one such decomposing solver. It provides two interfaces:

	Command Line Interface (CLI)

The tabu algorithm is executed on the problem which is divided into subproblems of
several dozen variables each.

	Python Interface

The Python interface provides a QBSolv class wrapper for
the qbsolv C code. A dimod sampler can be substituted for the default tabu algorithm.

For a description of the algorithm and implementation, see
Partitioning Optimization Problems for Hybrid Classical/Quantum Execution.

For a description of the tabu search algorithm, see Tabu search [https://en.wikipedia.org/wiki/Tabu_search].

Example

This example sends 30-variable sub-problems of a 500-variable QUBO to the dwave-neal
sampler to be incorporated into the tabu results run in the main loop of qbsolv.

>>> from dwave_qbsolv import QBSolv
>>> import neal
>>> import itertools
>>> import random
...
>>> qubo_size = 500
>>> subqubo_size = 30
>>> Q = {t: random.uniform(-1, 1) for t in itertools.product(range(qubo_size), repeat=2)}
>>> sampler = neal.SimulatedAnnealingSampler()
>>> response = QBSolv().sample_qubo(Q, solver=sampler, solver_limit=subqubo_size)
>>> print("energies=" + str(list(response.data_vectors['energy']))) # doctest: +SKIP
energies=[-2800.794817495185]

Reference Documentation

	Command Line Interface

	Python Interface

	qbsolv Input File Format

Command Line Interface

Use the following command with its options to run qbsolv from a terminal.

qbsolv -i infile [-o outfile] [-m] [-T] [-n] [-S SubMatrix] [-w]
 [-h] [-a algorithm] [-v verbosityLevel] [-V] [-q] [-t seconds]

Description

qbsolv executes a quadratic unconstrained binary optimization
(QUBO) problem represented in a file. It returns bit-vector
results that minimizes—or optionally, maximizes—the value of
the objective function represented by the QUBO. The problem is
represented in QUBO(5) file format.

The QUBO input problem is not limited to the graph size or connectivity of a
sampler, for example the D-Wave system.

Options are as follows:

-i infile
 Name of the file for the input QUBO. This option is mandatory.
-o outfile
 Optional output filename.
 Default is the standard output.
-a algorithm
 Optional selection for the outer loop algorithm. Default is o.
 'o' for original qbsolv method. Submatrix based upon change in energy.
 'p' for path relinking. Submatrix based upon differences of solutions
-m
 Optional selection of finding the maximum instead of the minimum.
-T target
 Optional argument target value of the objective function. Stops execution when found.
-t timeout
 Optional timeout value. Stops execution when the elapsed CPU time equals or
 exceeds it. Timeout is only checked after completion of the main
 loop. Other halt values such as 'target' and 'repeats' halt before 'timeout'.
 Default value is 2592000.0.
-n repeats
 Optional number of times the main loop of the algorithm is repeated with
 no change in optimal value found before stopping.
 Default value is 50.
-S subproblemSize
 Optional size of the sub-problems into which the QUBO is decomposed.
 If no "-S 0" or "-S" argument is present, uses the size specified in the
 embedding file found in the workspace set up by DW. If no DW environment is
 established, value defaults to 47 and uses the tabu solver on subproblems.
 If a value is specified, subproblems based on that size are solved with the
 tabu solver.
-w
 If present, the QUBO matrix and result are printed in .csv format.
-h
 If present, prints the help or usage message for qbsolv and exits without execution.
-v verbosityLevel
 Optional setting of the verbosity of output. The default verbosityLevel of
 0 outputs the number of bits in the solution, the solution,
 and the energy of the solution. A verbosityLevel of 1 outputs the same
 information for multiple solutions, if found. A verbosityLevel of 2
 also outputs more detailed information at each step of the algorithm. The
 information increases for verbosity levels of up to 4.
-V
 If present, prints the version number of the qbsolv program and exits without execution.
-q
 If present, prints the format of the QUBO file.
-r seed
 Used to reset the seed for the random number generation.

Python Interface

Class

	
class QBSolv

	Wraps the qbsolv C package for python.

Examples

This example uses the tabu search algorithm to solve a small Ising problem.

>>> h = {0: -1, 1: 1, 2: -1}
>>> J = {(0, 1): -1, (1, 2): -1}
>>> response = QBSolv().sample_ising(h, J)
>>> list(response.samples())
'[{0: 1, 1: 1, 2: 1}]'
>>> list(response.energies())
'[1.0]'

Methods

	QBSolv.sample(bqm, **kwargs)

	Sample low-energy states defined by a QUBO using qbsolv.

dwave_qbsolv.QBSolv.sample

	
QBSolv.sample(bqm, **kwargs)

	Sample low-energy states defined by a QUBO using qbsolv.

Note

The qbsolv library being shared by all instances of this class is
non-reentrant and not thread safe. The GIL should not be released
by this method until that is resolved.

Note

The default build of this library doesn’t have the dw library.
To use solver=’dw’ this module must be built from source with
that library.

The parameter solver given to this method has several valid forms:

	String ‘tabu’ (default): sub problems are called via an internal call to tabu.

	String ‘dw’: sub problems are given to the dw library.

	Instance of a dimod sampler. The sample_qubo method is invoked.

	Callable that has the signature (qubo: dict, current_best: dict)
and returns a result list/dictionary with the new solution.

	Parameters

	
	Q (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary defining the QUBO. Should be of the form
{(u, v): bias} where u, v are variables and bias is numeric.

	num_repeats (int [https://docs.python.org/3/library/functions.html#int], optional) – Determines the number of times to
repeat the main loop in qbsolv after determining a better
sample. Default 50.

	seed (int [https://docs.python.org/3/library/functions.html#int], optional) – Random seed. Default generated by random module.

	algorithm (int [https://docs.python.org/3/library/functions.html#int], optional) – Algorithm to use. Default is
ENERGY_IMPACT. Algorithm numbers can be imported from the module
under the names ENERGY_IMPACT and SOLUTION_DIVERSITY.

	verbosity (int [https://docs.python.org/3/library/functions.html#int], optional) – Prints more detail about qbsolv’s internal
process as this number increases.

	timeout (float [https://docs.python.org/3/library/functions.html#float], optional) – Number of seconds before routine halts. Default is 2592000.

	solver – Sampling method for qbsolv to use; see method description.

	solver_limit (int [https://docs.python.org/3/library/functions.html#int], optional) – Maximum number of variables in a sub problem.

	target (float [https://docs.python.org/3/library/functions.html#float], optional) – If given, qbsolv halts when
a state with this energy value or better is discoverd. Default is None.

	find_max (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Switches from searching for minimization to
maximization. Default is False (minimization).

	Returns

	Response

Examples

This example uses the tabu search algorithm to solve a small QUBO.

>>> Q = {(0, 0): 1, (1, 1): 1, (0, 1): 1}
>>> response = QBSolv().sample_qubo(Q)
>>> list(response.samples())
'[{0: 0, 1: 0}]'
>>> list(response.energies())
'[0.0]'

qbsolv Input File Format

A .qubo file contains data that describes an unconstrained
quadratic binary optimization problem. It is an ASCII file comprising
four types of lines:

	Comments defined by a “c” in column 1. Comments may appear
anywhere in the file, and are ignored.

	Program line defined by a “p” in the first column.
A single program line must be the first non-comment line in the file.
The program line has six required fields separated by space(s),
as in this example:

p qubo topology maxNodes nNodes nCouplers

where:

p Problem line sentinel.
qubo File type identifier.
topology String that identifies the topology of the problem and the specific
 problem type. For an unconstrained problem, target is "0" or
 "unconstrained." In future implementations, valid strings
 might include "chimera128" or "chimera512" (among others).
maxNodes Number of nodes in the topology.
nNodes Number of nodes in the problem (nNodes <= maxNodes).
 Each node has a unique number and must take a value in the range
 {0 - (maxNodes-1)}. A duplicate node number is an error. Node
 numbers need not be in order, and need not be contiguous.
nCouplers Number of couplers in the problem. Each coupler is a unique connection
 between two different nodes. The maximum number of couplers is (nNodes)^2.
 A duplicate coupler is an error.

	nNodes clauses. Each clause is made up of three numbers, separated
by one or more blanks. The first two numbers must be integers and are the number
for this node (repeated). The node number must be in range {0 , (maxNodes-1)}.
The third value is the weight associated with the node. Weight may be an integer
or float, and can take on any positive or negative value, or be set to zero.

	nCouplers clauses. Each clause is made up of three numbers, separated by one or
more blanks. The first two numbers, (i and j), are the node numbers for this coupler
and must be different integers, where (i < j).Each number must be one of the nNodes
valid node numbers (and thus in range {0, (maxNodes-1)}).
The third value is the strength associated with the coupler. Strength may be an
integer or float, and can take on any positive or negative value, but not zero.
Every node must connect with at least one other node (thus must have at least
one coupler connected to it).

Here is a simple QUBO file example for an unconstrained QUBO with 4
nodes and 6 couplers. This example is provided to illustrate the
elements of a QUBO benchmark file, not to represent a real problem.

| <--- column 1
c
c This is a sample .qubo file
c with 4 nodes and 6 couplers
c
p qubo 0 4 4 6
c ------------------
0 0 3.4
1 1 4.5
2 2 2.1
3 3 -2.4
c ------------------
0 1 2.2
0 2 3.4
1 2 4.5
0 3 -2
1 3 4.5678
2 3 -3.22

Installation

Python

A wheel might be available for your system on PyPI. Source distributions are provided as well.

pip install dwave-qbsolv

Alternatively, you can build the library with setuptools.

pip install -r python/requirements.txt
pip install cython==0.27
python setup.py install

C

To build the C library use cmake to generate a build command for your system. On Linux the commands would be something
like this:

mkdir build; cd build
cmake ..
make

To build the command line interface turn the cmake option QBSOLV_BUILD_CMD on. The command line option for cmake to do
this would be -DQBSOLV_BUILD_CMD=ON. To build the tests turn the cmake option QBSOLV_BUILD_TESTS on. The command
line option for cmake to do this would be -DQBSOLV_BUILD_TESTS=ON.

License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.

“License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity
exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

“Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

	You must give any other recipients of the Work or
Derivative Works a copy of this License; and

	You must cause any modified files to carry prominent notices
stating that You changed the files; and

	You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

	If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

Contributing to qbsolv

We, the qbsolv developers, expect a variety of contributions, from reporting of bugs or
suggestions for examples or tutorials to development of improvements or alternatives to
qbsolv’s core algorithms. Here we describe how we plan to interact with contributors
making such contributions, though that plan will of course change as those contributions
occur.

Issues

Bugs or anomalies in the behavior of the tool, issues with its installation, requests
for changes in documentation, design and development issues, and feature requests will
be tracked via GitHub’s Issues mechanism.

When reporting a bug, please provide the following info if appropriate:

	What are the steps to reproduce the bug? If possible, the simplest such set of steps
is best.

	Does the bug still happen using the latest version?

	What qbsolv version and OS are you using?

Contributions

We believe that qbsolv will make the fastest progress to being a robust metaheuristic
solver capable of quantum acceleration by being widely used both by end-users solving
problems and by metaheuristic algorithm developers exploring new metaheuristic algorithms.

In general, you may want to think about starting your contributions gradually, using
qbsolv and reporting any strengths and weaknesses (e.g., bugs, documentation improvements)
you encounter. This will help you build relationships with the qbsolv developers. And
don’t forget that contributions can be other than just code or documentation; creating
an example or a tutorial helps new users come up to speed and is often high value.

We expect to incorporate promising and proven algorithmic changes into the master code base.
This wide use by algorithm developers requires a balance between accepting changes and
maintaining a stable tool for end-users. Over time we expect to have processes for both
building and regression testing (both correctness and performance) that we will expect new
changes to pass before being considered for inclusion.

Submitting A Contribution

For now, we accept a contribution as a Pull Request (PR) on GitHub, though this may change.
Please follow these steps:

	If your change is substantial, first create a feature request to start a discussion
with the developers to ensure your intent aligns with qbsolv plans.

	A PR should have a clear purpose and do exactly one thing. This enables the rest
of the process to be crisp.

	Each commit in PR should be an atomic change representing one step in development.

	As appropriate, please explain anything that is not obvious from the code; this could be
in comments, commit messages, or the PR description.

	Sign your patch via the sign-off line, often created by git commit -s. Your sign-off
certifies that you wrote the patch or otherwise have the right to pass it along as
an open-source patch; see the full text of the certificate just below. Your
sign-off line might look like Signed-off-by: Abby Smith <abby.smith@mail.com>
Please use your real name, not a pseudonym. This project does not accept
anonymous contributions.

License

qbsolv is licensed under the terms in LICENSE.
By contributing to the project, you agree to the terms of the license and to release your
contribution under those terms.

 Python Module Index

 d

 		 	

 		
 d	

 	
 	
 dwave_qbsolv	

Index

 D
 | Q
 | S

D

 	
 	dwave_qbsolv (module)

Q

 	
 	QBSolv (class in dwave_qbsolv)

S

 	
 	sample() (QBSolv method)

 _static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 qbsolv

 		
 Introduction

 		
 Example

 		
 Reference Documentation

 		
 Command Line Interface

 		
 Description

 		
 Python Interface

 		
 Class

 		
 Methods

 		
 qbsolv Input File Format

 		
 Installation

 		
 Python

 		
 C

 		
 License

 		
 Contributing to qbsolv

 		
 Issues

 		
 Contributions

 		
 Submitting A Contribution

 		
 License

_static/up.png

